
m
trak

• Ernie Costa • Michael Daniels • Lindsay Graham • Erik Olson • Dion St. Hilaire •

Breaking down barriers between carriers

Manual and Documentation

©mEYEtrak 2009

Table of Contents

User Manual - 1 -

Getting Started - 1 -

What you need - 1 -

Creating your mEYEtrak Account - 1 -

Setting up your mEYEtrak Account on Device - 2 -

Windows Mobile 6 Professional Client - 3 -

Using Buddy Info - 4 -

Using Buddy Request Alerts - 5 -

Using Buddy in Range Alerts - 6 -

User Settings - 7 -

Buddy Map (coming soon) - 8 -

Web Interface - 9 -

Buddy List - 10 -

Settings - 11 -

Server Documentation - 12 -

Communicating with the Server - 12 -

Developing Trakets - 12 -

Basic requirements for designing a traket - 12 -

Database - 13 -

Errors - 13 -

Security - 13 -

Website Documentation - 14 -

Trakets Documentation - 15 -

General Notes - 15 -

HTTPS - 15 -

Timestamp - 15 -

Scenarios - 15 -

Standard Form - 15 -

Request - 15 -

Response - 16 -

Credentials - 16 -

Elements - 16 -

Scenarios - 16 -

Account Info - 17 -

©mEYEtrak 2009

Attributes - 17 -

Elements - 17 -

Scenarios - 17 -

Buddy - 18 -

Elements - 18 -

Scenarios - 19 -

Add Buddy - 19 -

Elements - 19 -

Scenarios - 20 -

Remove Buddy - 20 -

Elements - 20 -

Scenarios - 20 -

Avatars - 20 -

Elements - 20 -

Scenarios - 21 -

Errors - 21 -

Error Codes - 22 -

Request Buddy Location - 22 -

Elements - 22 -

Scenarios - 22 -

Send Location - 23 -

Elements - 23 -

Scenarios - 23 -

Update Location - 23 -

Elements - 23 -

Scenarios - 23 -

Update Status - 24 -

Elements - 24 -

Scenarios - 24 -

Additional Features - 25 -

Stolen PhoneTrak - 25 -

Today Screen Menu Item - 25 -

Phone Notifications Outside the Application - 25 -

Add Buddies from Phone Contacts - 25 -

Location-based Advertisements - 25 -

- 1 -
 ©mEYEtrak 2009

User Manual

Getting Started

What you need

To use mEYEtrak, you need:

 An Internet browser that is SSL compliant

 A Mobile Phone running Windows Mobile 6.1 Professional

 An active Internet Connectioni

Creating your mEYEtrak Account

Before you can use any mEYEtrak and any of its services, you must first create and validate an account.

A mEYEtrak account may be created at http://meyetrak.fit.edu/?id=register

In order to successfully register you must provide:

 E-mail addressii

 Strong Password

 Cell phone carrieriii

 Phone numberiv

 First Name

 Last Name

After creating an account, 2 unique verification codes will be sent to you; one via SMSv and the other via

E-Mail. Upon providing these codes, along with your 10 digit phone number access will be granted to

your mEYEtrak account.

Congratulations, you are now a validated mEYEtrak user; you can now begin connecting with your

friends in ways not previously possible!

http://meyetrak.fit.edu/?id=register

- 2 -
 ©mEYEtrak 2009

Setting up your mEYEtrak Account on Device

Please point your Device’s browser to http://meyetrak.fit.edu/?id=download . The provided file will

install mEYEtrak on your device.

After the installation completes mEYEtrak will be located in the “Installed Programs” section of your

device. Anytime you wish to view mEYEtrak updates you may go there and click on the icon.

The application will then launch, if you are running mEYEtrak for the first time on this device you will be

prompted for your username and password.

If you are unable to provide valid credentials you will be provided a link that will direct you to the

password recovery page: https://meyetrak.fit.edu/?id=recover_password, from which we will help you

revalidate your ownership of this account by sending another combination of E-Mail and SMSv validation

codes.

http://meyetrak.fit.edu/?id=download
https://meyetrak.fit.edu/?id=recover_password

- 3 -
 ©mEYEtrak 2009

Windows Mobile 6 Professional Client
After successfully logging into the mEYEtrak application you will be taken to your Buddy list page.

Here you have access to a list of all of your

friends, you are also able to see their status,

distance from youvi as well as the last time they

updated their information.

Update Status: You may also update your

status, by inputting text into the status box and

clicking ‘update’.

Add Buddy: Additional users may be added to

your buddy list by clicking on the ‘+’. You will be

directed to the “Add Buddy” page where you can

input either the telephone number or email

address of your desired buddy. A add buddy alert

will be sent to this buddy, to which they can

either accept or reject.

Buddy Info: More specific information and

options for each buddy can be displayed by

simply clicking on any individual buddy.

Menu: From here you can logout of the service

or exit the application.

The information about each buddy will be updated at a frequency you determine. In this way you will

only get updates about your buddies at intervals which are convenient for you.

Please be aware that by clicking “ ” at the top of the application, mEYEtrak will continue to run in the

background. To terminate the application you must explicitly click Menu >> Exit.

- 4 -
 ©mEYEtrak 2009

Using Buddy Info

If you click on any specific buddy you will be taken to “Buddy Info” here there is a whole host of ways

you may interact with this buddy.

Buddy Info: Your buddies First and Last

Name, Status and Avatar are all displayed

here at the top

E-Mail/SMS/Call: You are provided with

the email address, and phone number

your buddy has used to validate their

account. Clicking on any one of these you

will start an alternate communication

session: E-Mail, Phone Call or SMSv

respectively.

Alert Radius: Here you can set the range

in which you wish to be notified that your

buddy is ‘in range’. If you set this to 0 you

will never be alerted about this buddy.

Privacy: You may set the level of privacy

you wish to have with this particular

buddy. You may set this to:

 Private: Buddy will not see any

location information about you

 Semi-Private: Buddy will see an

approximation of your location.

 Public: Buddy will see your exact

location.

Delete: You may choose to no longer be associated with any particular buddy; in this case you may click

on ‘Delete’. As further verification, a confirmation box will pop up to ensure that you really want to

delete this buddy. They will also be forced to delete you as a buddy.

- 5 -
 ©mEYEtrak 2009

Using Buddy Request Alerts

In the event that something happens mEYEtrak will notify you of this occurrence.

When this happens the “Alert” tab will show the number of alerts you currently have, after

selecting this tab you will have the following options.

Friend Request: In the event that

another user requests to add you as a

buddy (see Buddy Requests), you have the

option to either accept them or not.

Accept Buddy: This user will be added to

your buddy list. You will also be added to

their buddy list. Now you may set privacy

and alert relationships with this user.

Reject Buddy: This will ignore the user’s

“Buddy Request”. They will not be

notified of this.

- 6 -
 ©mEYEtrak 2009

Using Buddy in Range Alerts

This is a list of all of the buddies that fall within the “Alert Radius” which you have previously

specified for them.

Dismiss: This will remove this alert from

the “Buddies in Range” tab. If this buddy

goes out of range, and then comes back in

range, you will be notified again.

- 7 -
 ©mEYEtrak 2009

User Settings

This Screen will allow you to change your contact information, along with the frequency you

wish to update your buddy information from the server (default 5 minutes).

Save: Will Save the changes you have

submitted. If you are attempting to

change your password, the ‘new’ and

‘confirm’ password fields must match.

Discard: All of the changes you have

made will be reset to the previously saved

settings.

- 8 -
 ©mEYEtrak 2009

Buddy Map (coming soon)

The buddy map is where you may come to get a visual representation of the location of your

buddiesvi.

- 9 -
 ©mEYEtrak 2009

Web Interface

You may also log into your account utilizing our Web Interface. From this you can interact with

your buddies and account in much the same way you have done on the mobile mEYEtrak

application.

Point your browser to http://meyetrak.fit.edu

Login at the top right-hand corner, for account creation please see Creating your mEYEtrak

Account.

Here you enter the email address and password you have previously registered with mEYEtrak.

If your credentials are accepted you will be directed to your profile. Here you will be able to see

your personal information as well as a map of where your buddies actually arevi.

http://meyetrak.fit.edu/

- 10 -
 ©mEYEtrak 2009

Buddy List

Selecting the Buddies Link will direct you to a view of all your buddies where you can

add/remove buddies.

- 11 -
 ©mEYEtrak 2009

Settings

Selecting the ‘Settings’ link will direct you to a view of your settings where you can you can

update your contact information, including avatars.

i Unlimited Data plan Recommended.
ii An e-mail address and phone number is required to validate an account.
iii Will be used to determine the domain needed to communicate with device via SMS.
iv If your account is not validated within 24 hours your credentials will be purged from our system.
v Standard rates apply.
vi User location will be provided according to the privacy level your buddy establishes with you.

- 12 -
 ©mEYEtrak 2009

Server Documentation

Communicating with the Server
 Invoking an action on the server is similar to calling a function in the client side code, except all

data regarding the call is passed via XML

o The action type is specified by the child’s node name

o The variables associated with the action are specified via the node’s children

 The child’s name specifies the variable name

 The child’s content specifies the data assigned to that variable

 All action requests must be specified as children of the ‘requests’ node

 If the client expects a response from the traket, an ‘id’ parameter in the XML must be specified

for the traket.

 Authentication of the client occurs with every traket. The user’s credentials must be passed via

the ‘credentials’ node

 The server provides a generic interface to the server-side trakets allowing clients of any type

(web, phone, pc) to communicate with it via XML over HTTPS

Developing Trakets
mEYEtrak was designed with the possibility of expandability in mind; to that end all server-side

functionality related to the client is contained within the “traket” modules. These trakets are designed

to be developed independently of the rest of the system, with only a few basic requirements to allow

them to communicate with the client. A current list and descriptions of trakets can be found in Trakets

Documentation.

Basic requirements for designing a traket

 All trakets currently available to the client must be declared in ‘/utils/Traket.php’

 All trakets that modify (dirty) any data in the backend-database must explicitly declare those

functions in their constructor in the ‘$this->dirtyList’ array.

 All responses to the client must be added to the ‘$this->response’ XML object. All headers for

the child are handled by the Application; all that is required from the traket is the sub-children.

 All actions accessible by the client must bear the same name as the action its specified in

‘/utils/Traket.php’

 All actions accessible by the client must take in a variable called ‘$children’, which is a pointer to

the XML children passed to it by the client.

 All actions which communicate with the database should utilize the global ‘$this->database’

object which handles database connections/queries for the Application

 There are several helper functions / variables available

 A global unction to sanitize inputs for individual databases is accessible via ‘$this->database-

>sanitize()’

 A global function for pulling data directly from the database and passing it to the client called

‘$this->constructXMLFromSQL()’, it is documented in ‘/utils/Traket.php.’

- 13 -
 ©mEYEtrak 2009

 Information on the current user is available via $_SESSION

 user_id  The id of the current user

 email  The email address of the current user

 name_last  The last name of the current user

 name_first  The first name of the current user

 phone_number  The phone number of the current
user

Database
1. A database object is globally available in the Application.

2. Database objects should be created via the DatabaseFactory, which will take the credentials

from and the required database type and create the connection and pass it back.

3. All queries to the database should use the Database class’ ‘query()’ function.

Errors
1. All errors passed to the client should be specified in ‘/vars/errors.inc.php’

2. A current list of errors is defined in Error Codes.

Security
Security is handled several functions provided by /utils/SecurityHeader.php

authenticate() authenticates a user’s credentials
isAuthenticated() determines if the current user has been authenticated
logout() logs the user out and destroys the associated session

- 14 -
 ©mEYEtrak 2009

Website Documentation
 All pages accessible via the website must be placed in the ‘/pages/’ directory.

 All pages are accessed via the ‘id’ get variable which maps directly to the page’s filename in the

pages directory.

 All pages accessible via the website must end with the extension of either ‘.ajax.php’ or

‘.ajax.html’

 All pages have two global arrays associated with them to allow for site templates to be

implemented.

 $page: this array contains variable associated with the global site template.

 Auth  the authentication box

 Menu  the site menu

 Date  the current date

 Title  the page title

 Content  the content

 Javascript  javascript

 Onload  the javascript function to be executed on page load

 Onunload  the javascript function to be executed on page unload

 $pagvars: this array contains variable which are specified by the developer and will be parsed

into $page*‘content’+

- 15 -
 ©mEYEtrak 2009

Trakets Documentation

General Notes

HTTPS

All communication with the server occurs over HTTPS. This is why text in the XML is not encrypted.

HTTPS is HTTP tunneled over SSL, which is inherently encrypted. More information can be found by

visiting http://en.wikipedia.org/wiki/Https .

Timestamp

Timestamps are a part of every XML element. They are in UNIX timestamp form. There is no specific

purpose for them, but in some cases can be used for monitoring when certain actions occur. When

generating a request from the client, timestamps should be automatically generated using the current

time, such as DateTime.Now (in C#).

Scenarios

There are two possible scenarios: Client to Server and Server to Client. Not all elements are two-way. If

only one scenario is given for an element, then it can be assumed that the other direction is invalid and

should not be used.

Standard Form

Request

The standard form of an XML request is as follows:

<?xml version="1.0" encoding="utf-8" ?>

<xml>

 <credentials>

 <email/>

 <password/>

 </credentials>

 <requests>

 <buddy id="buddy_list" action="buddy_list"/>

 <mobile id="mobile" action="everything"/>

 <user id="account_info" action="account_info"/>

 <avatars id="avatars" action="verify"/>

 </requests>

</xml>

Notes

1. The “id” attributes are used to define what the reponse of the request is returned as. For

example, <buddy id="buddy_list" action="buddy_list"/> is used to request the

user’s buddylist. The response will be in an element with the name “buddy_list”. If the “id” of

the element was instead “bl”, then the response element would have the name “bl”.

2. All added elements should be appended as children in the <requests> node.

http://en.wikipedia.org/wiki/Https

- 16 -
 ©mEYEtrak 2009

3. As a general rule, the four (4) children in requests should always be present when sending a

request from a client such as a phone. This will allow the buddylist, account information, alerts,

and avatars to be up-to-date as of the most recent request.

Response

The standard form of an XML response is as follows:

<?xml version="1.0"?>

<xml>

 <buddy_list></buddy_list>

 <mobile>

 <alert_queue></alert_queue>

 <buddy_requests></buddy_requests>

 </mobile>

 <account_info></account_info>

 <avatars></avatars>

</xml>

Notes

1. This is the basic form of the response given the above request.

2. <buddy_list> will have buddy children.

3. <alert_queue> will have children that are alerts such as location requests.

4. <buddy_requests> will have children that are add buddies.

5. <account_info> will be in this user form.

6. <avatars> will have children that are avatars.

Credentials
<credentials>

 <timestamp>-62135578800</timestamp>

 <email>default value</email>

 <password>default value</password>

 </credentials>

Elements

email

The email address of the current user.

password

The user’s password.

Scenarios

Client to Server

A credential element should always be present in the XML request to the server. If it is not, the server

will not be able to authenticate the user.

- 17 -
 ©mEYEtrak 2009

 Account Info
<user action="default value">

 <timestamp>-62135578800</timestamp>

 <email>e@mail.com</email>

 <id>0</id>

 <last_name>default value</last_name>

 <first_name>default value</first_name>

 <status>default value</status>

 <phone_number>default value</phone_number>

 </user>

Attributes

action

The action specifies the purpose of the element.

Elements

email

The user’s email address.

id

The user’s id on the server as assigned by the server.

last_name

The user’s last name.

first_name

The user’s first name.

status

The user’s status.

Scenarios

Client to Server

This can be sent to the server to update certain user information, such as the first name.

Server to Client

This can be sent from the server in the event that the user’s information is requested by the client.

Generally this is always requested by the client to insure that the information is up to date in the event

that the information is updated via the web interface.

- 18 -
 ©mEYEtrak 2009

Buddy
<buddy>

 <timestamp>1240369082</timestamp>

 <email>e@mail.com</email>

 <id>0</id>

 <last_name>default value</last_name>

 <first_name>default value</first_name>

 <distance>-1</distance>

 <notify_distance>0</notify_distance>

 <status>default value</status>

 <phone_number>default value</phone_number>

 <privacy>2</privacy>

 <latitude>-1</latitude>

 <longitude>-1</longitude>

 <location_time>-2208970800</location_time>

 </buddy>

Elements

email

The buddy’s email address.

id

The buddy’s server-assigned id.

last_name

The buddy’s last name.

first_name

The buddy’s first name.

distance

The distance (calculated by the server) of the buddy from the current user. If the distance is not known,

then the value is “-1”.

notify_distance

The user’s setting for the buddy. This defines the upper bound of the distance for which the user will be

notified.

status

The buddy’s status.

phone_number

The buddy’s phone number. This is defined in the format “##########”. The client should handle

conversion into whichever format is preferred.

- 19 -
 ©mEYEtrak 2009

privacy

This defines the user’s privacy setting for the buddy. Possible values are:

0

Private - the buddy will not be able to see any location information about the user.

1

Semi-private - the buddy will only be able to see the distance of the user.

2

Public – the buddy will be able to see the distance as well as the exact coordinates of the user.

latitude

The buddy’s latitude. The value is “-1” if the value is unknown.

longitude

The buddy’s longitude. The value is “-1” if the value is unknown.

location_time

The UNIX time of the buddy’s location.

Scenarios

Client to Server

If the client sends this element to the server, an attribute “action” should be added to the element with

the value “update”. This can be used to update settings such as the privacy or notify_distance.

Server to Client

Buddy elements are sent to the client when the buddy list is requested.

Add Buddy
<buddy action="add">

 <timestamp>1240369082</timestamp>

 <email>e@mail.com</email>

 <id>0</id>

 <phone_number>default value</phone_number>

 </buddy>

Elements

email

The buddy’s email address.

id

The buddy’s server-assigned id.

phone_number

The buddy’s phone number.

- 20 -
 ©mEYEtrak 2009

Scenarios

Client to Server

This element can be sent to the server to add a buddy. In this scenario, only the email or the phone

number is needed (not both).

Server to Client

This element can be sent from the server in the event that someone has added the user as a buddy. It is

used to notify the user that there is a pending buddy request.

Remove Buddy
<buddy action="remove">

 <timestamp>1240369078</timestamp>

 <email>e@mail.com</email>

 <id>0</id>

 </buddy>

Elements

email

The buddy’s email address.

id

The buddy’s server-assigned id.

Scenarios

Client to Server

This can be sent to the server to either remove a buddy, or to reject a buddy request.

Avatars
<avatar>

 <timestamp>-62135578800</timestamp>

 <id>0</id>

 <hash>default value</hash>

 <file>default value</file>

 <type>default value</type>

 </avatar>

Elements

id

The server-assigned id of the user pertaining to the avatar.

hash

The hash of the avatar. This is generated by the server.

- 21 -
 ©mEYEtrak 2009

file

A hex representation of the avatar file.

type

The mime type of the file.

Scenarios

Client to Server

Avatar elements can be sent to the server to verify that the current avatars on the client are up-to-date.

In this event, only the id and hash are needed.

Server to Client

Avatar elements are sent to the client when a verify action is received from the client. A buddy’s avatar

is returned in two cases:

Case 1

The hash sent by the client does not match the hash of the avatar on the server (i.e. the client has an

outdated avatar).

Case 2

The client did not send a hash for a buddy (i.e. the client doesn’t have any avatar for the buddy).

Errors
<error>000</error>

The value in the error element is an error code that correlates to the following table:

- 22 -
 ©mEYEtrak 2009

Error Codes

Code Error

000 unknown_error
001 connection_notSecure
002 database_error
101 credentials_incorrectFormat
102 credentials_invalid
103 credentials_inactive
201 traket_invalid
202 traket_invalidParameters
203 traket_buddy
301 xml_error
302 xml_notSet
303 xml_noAction
304 xml_badParams
401 buddy_exists
402 buddy_requestNotFound
403 buddy_userNotBuddy
404 buddy_pending
501 user_DNE
502 user_alreadyExists
601 alert_DNE
602 alert_alreadyExists

Request Buddy Location
<request_location>

 <timestamp>1240369081</timestamp>

 <email>e@mail.com</email>

 </request_location>

Elements

email

An email address. Interpretation varies depending on the direction of the request.

Scenarios

Client to Server

The user does not currently know the location of the buddy (i.e. the buddy’s privacy settings prevent it),

and the user wants to request the location. In this situation, the email address is that of the buddy

whose location is being requested.

Server to Client

A buddy has requested the user’s location. In this situation, the email address is that of the requesting

buddy.

- 23 -
 ©mEYEtrak 2009

Send Location
<send_location>

 <timestamp>1240369080</timestamp>

 <email>e@mail.com</email>

 <seconds_valid>0</seconds_valid>

 </send_location>

Elements

email

The recipient’s email address for the user’s location.

seconds_valid

The number of seconds the buddy will be able to see the user’s location. If the value is “0”, then the

buddy will be able to view the user’s location until the user manually changes the privacy setting.

Scenarios

Client to Server

The client wishes to allow a buddy, who cannot currently see the user’s location, to see their location.

The request changes the privacy setting for the buddy (either temporarily or permanently depending on

the value of ‘seconds_valid’).

Update Location
<gps action="update">

 <timestamp>1240369081</timestamp>

 <longitude>0</longitude>

 <latitude>0</latitude>

 </gps>

Elements

longitude

The longitude value returned by the GPS.

latitude

The latitude value returned by the GPS.

Scenarios

Client to Server

The client is updating the current location of the user. This should be provided in every request so long

as the GPS can provide an accurate location.

- 24 -
 ©mEYEtrak 2009

Update Status
<user action="status_set">

 <timestamp>-62135578800</timestamp>

 <message>default value</message>

 </user>

Elements

message

The new status message.

Scenarios

Client to Server

The user wishes to change the current status.

- 25 -
 ©mEYEtrak 2009

Additional Features
There is an endless list of features that could be added to mEYEtrak. Unfortunately, time constraints

limited the amount of features that were implemented during the span of the project. Below is just a

few of the features that would be desirable in the future.

Stolen PhoneTrak
The idea behind Stolen PhoneTrak is to be able to track your phone while maintaining security if the

phone is lost or stolen. A few requirements would need to be met to succeed in this task:

1. Make sure the application starts when the phone is turned on.

2. Prevent the application from being terminated.

3. Prevent any actions from within the application (including viewing alerts, buddies, etc.)

Today Screen Menu Item
Windows Mobile implements items that are viewed from the phone’s home screen (Today Screen Menu

Items). The application could implement such a menu item that would show the current status of the

mEYEtrak (alerts, connectivity status, etc.)

Phone Notifications Outside the Application
When a new alert is received, the user would be notified similarly to the notification received when a

text message is received. This should be an option that can be changed in the application settings.

There should be an auditory notification as well as a text-based notification.

Add Buddies from Phone Contacts
The user should be able to add buddies by selecting contacts from their contact list.

Location-based Advertisements
Revenues could be generated by collecting user interests and preferences, combining them with the

user’s location, and then providing suggestions for different venues (shopping, eating, etc.) in the

nearby area.

